在今天的的教程中,我们将打造更加个性化的大模型,可以定制搭载私人知识库的本地大模型!
我们探讨Meta AI 的尖端 Llama 3 语言模型构建强大的检索增强生成 (RAG) 来实现。通过利用 Llama 3 和 RAG 技术的功能,我们将创建一个应用程序,允许用户与网页进行交互式对话,检索定制化、私人知识库的相关信息并生成对用户查询的准确响应。在本教程中,我们将深入探讨设置开发环境、加载和处理网页数据、创建嵌入和向量存储以及实现 RAG 链以提供卓越用户体验的分步过程。
什么是Llama 3?
Llama 3 是由 Meta AI 开发的最先进的语言模型,擅长理解和生成类似人类的文本。
凭借其令人印象深刻的自然语言处理能力,Llama 3 可以理解复杂的查询、提供准确的响应并参与与上下文相关的对话。
它能够处理广泛的主题和处理效率,使其成为构建智能应用程序的理想选择。
想测试Llama 3的威力吗?立即与 Anakin AI 聊天!(它支持任何可用的 AI 模型!
什么是RAG?
检索增强生成 (RAG) 是一种将信息检索和语言生成相结合以提高问答系统性能的技术。
简单来说,RAG 允许 AI 模型从知识库或文档中检索相关信息,并使用该信息对用户查询生成更准确和上下文适当的响应。
通过利用检索和生成的强大功能,RAG 能够创建智能聊天机器人和问答应用程序,为用户提供高度相关和信息丰富的响应。
对于想要在没有编码经验的情况下运行 RAG 系统的用户,您可以尝试 Anakin AI,在那里您可以使用 No Code Builder 创建很棒的 AI 应用程序!
运行本地 Llama 3 RAG 应用的先决条件
在开始之前,请确保已安装以下先决条件:
Python 3.7 or higher
Streamlit
ollama
langchain
langchain_community
您可以通过运行以下命令来安装所需的库:
pip install streamlit ollama langchain langchain_community
使用 Llama-3 在本地运行您自己的 RAG 应用程序的分步指南
第 1 步:设置 Streamlit 应用程序
首先,让我们设置 Streamlit 应用程序的基本结构。创建一个名为 app.py 的新 Python 文件,并添加以下代码:
import streamlit as stimport ollamafrom langchain.text_splitter import RecursiveCharacterTextSplitterfrom langchain_community.document_loaders import WebBaseLoaderfrom langchain_community.vectorstores import Chromafrom langchain_community.embeddings import OllamaEmbeddingsst.title("Chat with Webpage 🌐")st.caption("This app allows you to chat with a webpage using local Llama-3 and RAG")# Get the webpage URL from the userwebpage_url = st.text_input("Enter Webpage URL", type="default")
此代码设置 Streamlit 应用程序的基本结构,包括标题、说明和供用户输入网页 URL 的输入字段。
第2步:加载和处理网页数据
接下来,我们需要从指定的网页加载数据并对其进行处理以供进一步使用。将以下代码添加到 app.py :
if webpage_url: # 1. Load the data loader = WebBaseLoader(webpage_url) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10) splits = text_splitter.split_documents(docs)
在这里,我们使用 WebBaseLoader from langchain_community 来加载网页数据。然后,我们使用 RecursiveCharacterTextSplitter from langchain 将加载的文档拆分为更小的块。
第 3 步:创建 Ollama 嵌入和矢量存储
为了能够从网页中有效地检索相关信息,我们需要创建嵌入和向量存储。添加以下代码:
# 2. Create Ollama embeddings and vector store embeddings = OllamaEmbeddings(model="llama3") vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
我们使用 from OllamaEmbeddings langchain_community 类创建 Ollama 嵌入并 llama3 指定模型。然后,我们使用该 Chroma 类创建一个向量存储,传递拆分文档和嵌入。
第 4 步:定义 Ollama Llama-3 模型函数
现在,让我们定义一个函数,该函数利用 Ollama Llama-3 模型根据用户的问题和相关上下文生成响应。添加以下代码:
# 3. Call Ollama Llama3 model def ollama_llm(question, context): formatted_prompt = f"Question: {question}/n/nContext: {context}" response = ollama.chat(model='llama3', messages=[{'role': 'user', 'content': formatted_prompt}]) return response['message']['content']
第 5 步:设置 RAG 链
为了根据用户的问题从向量存储中检索相关信息,我们需要设置 RAG(Retrieval Augmented Generation)链。添加以下代码:
# 4. RAG Setup retriever = vectorstore.as_retriever() def combine_docs(docs): return "/n/n".join(doc.page_content for doc in docs) def rag_chain(question): retrieved_docs = retriever.invoke(question) formatted_context = combine_docs(retrieved_docs) return ollama_llm(question, formatted_context) st.success(f"Loaded {webpage_url} successfully!")
在这里,我们使用该 as_retriever 方法从向量存储创建一个检索器。我们定义了一个帮助程序函数 combine_docs ,将检索到的文档组合成一个格式化的上下文字符串。该 rag_chain 函数接受用户的问题,使用检索器检索相关文档,将文档组合到格式化的上下文中,并将问题和上下文传递给 ollama_llm 函数以生成响应。
第 6 步:实现聊天
最后,让我们在 Streamlit 应用程序中实现聊天功能。添加以下代码:
# Ask a question about the webpage prompt = st.text_input("Ask any question about the webpage") # Chat with the webpage if prompt: result = rag_chain(prompt) st.write(result)
此代码添加一个输入字段,供用户询问有关网页的问题。当用户输入问题并提交时,将使用用户的问题调用该 rag_chain 函数。然后,生成的响应将使用 st.write 显示。
最后一步:是时候运行应用程序了!
若要运行该应用,请保存 app.py 文件并打开同一目录中的终端。运行以下命令:
streamlit run app.py
这将启动 Streamlit 应用程序,您可以在 Web 浏览器中通过提供的 URL 访问它。
结论
你已成功构建了在本地运行的 Llama-3 的 RAG 应用。该应用程序允许用户利用本地 Llama-3 和 RAG 技术的强大功能与网页聊天。用户可以输入网页 URL,应用程序将加载和处理网页数据,创建嵌入和向量存储,并使用 RAG 链检索相关信息并根据用户的问题生成响应。
根据需要添加更多功能、改进用户界面或集成其他功能,您可以随意探索和增强应用程序。
零基础如何学习大模型 AI
感谢朋友们看完这篇文章,如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~