Llama改进之——均方根层归一化RMSNorm

AIGC 0

引言

在学习完GPT2之后,从本文开始进入Llama模型系列。

本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由Root Mean Square Layer Normalization论文提出来的,可以参阅其论文笔记1

LayerNorm

层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算均值和方差,然后使用这些来对样本进行归一化:
μ = 1 H ∑ i = 1 H x i , σ = 1 H ∑ i = 1 H ( x i − μ ) 2 , N ( x ) = x − μ σ , h = g   ⊙ N ( x ) + b (1) /mu = /frac{1}{H}/sum_{i=1}^H x_i,/quad /sigma = /sqrt{/frac{1}{H}/sum_{i=1}^H (x_i - /mu)^2}, /quad N(/pmb x) = /frac{/pmb x-/mu}{/sigma},/quad /pmb h = /pmb g /,/odot N(/pmb x) + /pmb b /tag 1 μ=H1i=1Hxi,σ=H1i=1H(xiμ)2 ,N(x)=σxμ,h=gN(x)+b(1)
这里 x = ( x 1 , x 2 , ⋯   , x H ) /pmb x = (x_1,x_2,/cdots, x_H) x=(x1,x2,,xH)表示某个时间步LN层的输入向量表示,向量维度为 H H H h /pmb h h实LN层的输出; g , b /pmb g,/pmb b g,b实两个可学习的参数。

为什么层归一化有用?一些解释如下2

  1. 减少内部协变量偏移(Internal Covariate Shift): 内部协变量偏移是指在深度神经网络的训练过程中,每一层输入的分布会发生变化,导致网络的训练变得困难。层归一化通过对每一层的输入进行归一化处理,可以减少内部协变量偏移,使得每一层的输入分布更加稳定。
  2. 稳定化梯度: 层归一化有助于保持每一层输出的均值和方差稳定,从而使得梯度的传播更加稳定。这有助于减少梯度消失或梯度爆炸的问题,提高梯度在网络中的流动性,加快训练速度。
  3. 更好的参数初始化和学习率调整: 通过层归一化,每一层的输入分布被归一化到均值为0、方差为1的标准正态分布,这有助于更好地初始化网络参数和调整学习率。参数初始化与学习率调整的稳定性对模型的训练效果至关重要。
  4. 增强模型的泛化能力: 层归一化可以减少网络对训练数据分布的依赖,降低了过拟合的风险,从而提高模型的泛化能力。稳定的输入分布有助于模型更好地适应不同数据集和任务。

RMSNorm

虽然LayerNorm很好,但是它每次需要计算均值和方差。RMSNorm的思想就是移除(1)式中 μ /mu μ的计算部分1
x ˉ i = x i RMS ( x ) g i RMS ( x ) = 1 H ∑ i = 1 H x i 2 (2) /bar x_i = /frac{x_i }{ /text{RMS}(/pmb x)} g_i /quad /text{RMS}(/pmb x) =/sqrt{/frac{1}{H} /sum_{i=1}^H x_i^2} /tag 2 xˉi=RMS(x)xigiRMS(x)=H1i=1Hxi2 (2)

同时在实现也可以移除平移偏置 b /pmb b b

单看(2)式的话,相当于仅使用 x /pmb x x的均方根来对输入进行归一化,它简化了层归一化的计算,变得更加高效,同时还有可能带来性能上的提升。

实现

RMSNorm的实现很简单:

import torchimport torch.nn as nnfrom torch import Tensorclass RMSNorm(nn.Module):  def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:    super().__init__()    self.eps = eps    self.weight = nn.Parameter(torch.ones(hidden_size))    def _norm(self, hidden_states: Tensor) -> Tensor:    variance = hidden_states.pow(2).mean(-1, keepdim=True)    return hidden_states * torch.rsqrt(variance + self.eps)    def forward(self, hidden_states: Tensor) -> Tensor:    return self.weight * self._norm(hidden_states.float()).type_as(hidden_states)    

torch.rsqrttorch.sqrt的倒数;eps是一个很小的数,防止除零;hidden_states.float()确保了标准差计算的精确度和稳定性,然后在forward方法中,通过.type_as(hidden_states)将结果转换回原来的数据类型,以保持与输入张量相同的数据类型,使得归一化处理后的结果与输入数据类型一致。

下面通过一个简单的网络来测试一下:

import torchimport torch.nn as nnfrom torch import Tensorclass SimpleNet(nn.Module):    def __init__(self):        super(SimpleNet, self).__init__()        self.linear = nn.Linear(in_features=10, out_features=5)        self.rmsnorm = RMSNorm(hidden_size=5)    def forward(self, x):        x = self.linear(x)        x = self.rmsnorm(x)        return xnet = SimpleNet()input_data = torch.randn(2, 10)  # 2个样本,每个样本包含10个特征output = net(input_data)print("Input Shape:", input_data.shape)print("Output Shape:", output.shape)
Input Shape: torch.Size([2, 10])Output Shape: torch.Size([2, 5])

参考


  1. [论文笔记]Root Mean Square Layer Normalization ↩︎ ↩︎

  2. 批归一化和层归一化 ↩︎

也许您对下面的内容还感兴趣: