一、架构
二、说明
首先介绍一下需要部署的组件:
prometheus: 监控核心组件
cadvisor: 用于获取docker容器的指标,并暴露端口供prometheus抓取
node-exporter : 用户获取服务器的指标,并暴露端口供prometheus抓取
grafana: 监控图表好用的可视化组件
alertmanager: 告警组件
dingtalk: alert告警不支持钉钉,需要借助dingtalk插件
三、开始安装
本文使用docker进行部署
1.为需要被监控的主机安装node-exporter
docker pull prom/node-exporter
docker run -d -p 9100:9100 /-v /proc:/host/proc:ro /-v /sys:/host/sys:ro /-v /:/rootfs:ro /--name=node-exporter /prom/node-exporter
2.为需要被监控的主机安装cadvisor
docker pull google/cadvisor
docker run /-v /:/rootfs:ro /-v /var/run:/var/run:rw /-v /sys:/sys:ro /-v /var/lib/docker/:/var/lib/docker:ro /-p 9080:8080 /--detach=true /--name=cadvisor /google/cadvisor
3.为监控端主机安装prometheus、grafana、alertmanager、dingtalk
本文采用docker-compose安装方式
docker pull prom/prometheus
docker pull prom/alertmanager
docker pull grafana/grafana
docker pull timonwong/prometheus-webhook-dingtalk
准备好镜像后,创建文件夹,目录结构如下
/usr/local/prometheus/
├── laert
│ ├── alertmanager.yml
│ ├── config.yml
│ └── dingtalk.tmpl
├── prome
│ ├── rules
│ │ └── rules.yml
│ └── prometheus.yml
├── prometheus_data
├── grafana_data
└── docker-compose.yml
首先介绍docker-compose.yml文件,填入以下信息
version: '3.8'
services:
prometheus:
image: prom/prometheus:latest
container_name: prometheus
restart: always
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--web.enable-lifecycle'
- '--storage.tsdb.retention.time=30d'
volumes:
- ./prome:/etc/prometheus
- ./prometheus_data/:/prometheusports:
- "9090:9090"
grafana:
image: grafana/grafana:latest
container_name: grafana
restart: always
depends_on:
- prometheus
volumes:
- ./grafana_data:/var/lib/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=admin
dingtalk:
image: 10.0.6.110/prometheus/dingtalk
container_name: dingtalk
hostname: dingtalk
restart: always
volumes:
- ./alert/config.yml:/etc/prometheus-webhook-dingtalk/config.yml
- ./alert/dingtalk.tmpl:/opt/dingtalk/template/dingtalk.tmpl
ports:
- "29016:8060"
environment:
- TZ=Asia/Shanghai
alertmanager:
image: 10.0.6.110/prometheus/alertmanager
container_name: alertmanager
hostname: alertmanager
restart: always
volumes:
- ./alert/alertmanager.yml:/etc/alertmanager/alertmanager.yml
ports:
- "29012:9093"
environment:
- TZ=Asia/Shanghai
prometheus.yml文件
# prometheus.yml
global:
scrape_interval: 15s
alerting:
alertmanagers:
- static_configs:
- targets: ['10.0.6.110:29012']
rule_files:
- "/etc/prometheus/rules/*.yml"
scrape_configs:
- job_name: 'docker'
static_configs:
- targets: ['10.0.6.99:9100','10.0.6.98:9100','10.0.6.97:9100'] #这里改成安装了node-exporter的ip及端口
- job_name: 'cadvisor'
static_configs:
- targets: ['10.0.6.99:8080','10.0.6.98:8080','10.0.6.97:8080']#这里改成安装了cadvisor的ip及端口
rules.yml
#以下是一个简单的告警案例,具体PromQL根据实际情况编写
groups:
- name: example_group
rules:
- alert: HighCPUUsage
expr: sum(rate(node_cpu_seconds_total{mode="system"}[5m])) by (instance) > 0.8
for: 10m
labels:
severity: warning
annotations:
summary: "High CPU usage detected on {{ $labels.instance }}."
description: "The CPU usage on instance {{ $labels.instance }} has been above 80% for the past 10 minutes. Please investigate possible causes such as high workload or inefficient processes."
- alert: LowDiskSpace
expr: node_filesystem_free_bytes{mountpoint="/"} / node_filesystem_size_bytes{mountpoint="/"} < 0.2
for: 5m
labels:
severity: critical
annotations:
summary: "Low disk space on root partition ({{ $labels.instance }})"
description: "The disk space on the root partition of instance {{ $labels.instance }} is less than 10%. Immediate action might be required to avoid system issues. Consider cleaning up unnecessary files or expanding the disk."
alertmanager.yml文件
global:
resolve_timeout: 5mroute:
group_by: ['alertname']
group_wait: 30s
group_interval: 30s
repeat_interval: 1h
receiver: 'webhook'
receivers:
- name: 'webhook'
webhook_configs:
- url: 'http://10.0.6.110:29016/dingtalk/webhook/send' #IP换成你的IP
send_resolved: true
config.yml
## Request timeout
## timeout: 5s
### Uncomment following line in order to write template from scratch (be careful!)
##no_builtin_template: true
### Customizable templates path
#templates:
#- '/opt/dingtalk/template/dingtalk.tmpl'
### You can also override default template using `default_message`
### The following example to use the 'legacy' template from v0.3.0
##default_message:
## title: '{{ template "legacy.title" . }}'
## text: '{{ template "legacy.content" . }}'
### Targets, previously was known as "profiles"
targets:
webhook:
url: '钉钉群聊添加机器人生成的群聊url'
secret: '钉钉群聊添加机器人产生的加签秘钥' #如下图
dingtalk.tmpl 自定义消息模板
{{ define "__subject" }}
[{{ .Status | toUpper }}{{ if eq .Status "firing" }}:{{ .Alerts.Firing | len }}{{ end }}]
{{ end }}
{{ define "__alert_list" }}{{ range . }}
---
{{ if .Labels.owner }}@{{ .Labels.owner }}{{ end }}
告警状态:{{ .Status }}
告警级别:{{ .Labels.severity }}
告警类型:{{ .Labels.alertname }}
告警主机:{{ .Labels.instance }}
告警详情:{{ .Annotations.description }}
告警时间:{{ (.StartsAt.Add 28800e9).Format "2023-01-01 10:00:00" }}
{{ end }}{{ end }}
{{ define "__resolved_list" }}{{ range . }}
---
{{ if .Labels.owner }}@{{ .Labels.owner }}{{ end }}
告警状态:{{ .Status }}
告警级别:{{ .Labels.severity }}
告警类型:{{ .Labels.alertname }}
告警主机:{{ .Labels.instance }}
告警详情:{{ .Annotations.description }}
告警时间:{{ (.StartsAt.Add 28800e9).Format "2023-01-01 10:00:00" }}
恢复时间:{{ (.EndsAt.Add 28800e9).Format "2023-01-01 10:00:00" }}
{{ end }}{{ end }}
{{ define "default.title" }}
{{ template "__subject" . }}
{{ end }}
{{ define "default.content" }}
{{ if gt (len .Alerts.Firing) 0 }}
**Prometheus故障告警**
{{ template "__alert_list" .Alerts.Firing }}
---
{{ end }}
{{ if gt (len .Alerts.Resolved) 0 }}
**Prometheus故障恢复**
{{ template "__resolved_list" .Alerts.Resolved }}
{{ end }}
{{ end }}
{{ define "ding.link.title" }}{{ template "default.title" . }}{{ end }}
{{ define "ding.link.content" }}{{ template "default.content" . }}{{ end }}
{{ template "default.title" . }}
{{ template "default.content" . }}
以上准备就绪后,切换到docker-compose.yml的文件路径,启动服务
cd /usr/local/prometheus/
docker-compose up -d
4.启动成功后可以分别访问各端口查看是否正常启动
- 登录9090端口查看prometheus是否正常
点击Status>Targets 查看能否抓到数据
点击Status>Rules查看告警规则是否加载成功
登录3000端口,查看grafanan能否登录,并添加prometheus为数据源,导入看板模板
根据需求导入模板,我这边导入了8919(主机CPU,内存等信息可视化)和14964(docker容器CPU,内存等),更多模板请点这里StarsL.cn Dashboards | Grafana Labs
导入成功后查看看板
8919模板
14964模板
5.测试钉钉告警功能
修改告警规则,根据实际情况,触发报警
例如,将磁盘剩余可用少于90切持续1分钟触发报警
rules.yml修改
groups:
- name: example_group
rules:
- alert: HighCPUUsage
expr: sum(rate(node_cpu_seconds_total{mode="system"}[5m])) by (instance) > 0.8
for: 10m
labels:
severity: warning
annotations:
summary: "High CPU usage detected on {{ $labels.instance }}."
description: "The CPU usage on instance {{ $labels.instance }} has been above 80% for the past 10 minutes. Please investigate possible causes such as high workload or inefficient processes."
- alert: LowDiskSpace
expr: node_filesystem_free_bytes{mountpoint="/"} / node_filesystem_size_bytes{mountpoint="/"} < 0.9 #磁盘可用小于90%
for: 1m #持续1分钟
labels:
severity: critical
annotations:
summary: "Low disk space on root partition ({{ $labels.instance }})"
description: "The disk space on the root partition of instance {{ $labels.instance }} is less than 10%. Immediate action might be required to avoid system issues. Consider cleaning up unnecessary files or expanding the disk."
修改完成后重启容器
docker-compose down -vdocker-compose up -d
等几分钟后查看钉钉是否收到告警