小白也能读懂的ConvLSTM!(开源pytorch代码)

开源 0

ConvLSTM

    • 1. 算法简介与应用场景
    • 2. 算法原理
      • 2.1 LSTM基础
      • 2.2 ConvLSTM原理
        • 2.2.1 ConvLSTM的结构
        • 2.2.2 卷积操作的优点
      • 2.3 LSTM与ConvLSTM的对比分析
      • 2.4 ConvLSTM的应用
    • 3. PyTorch代码
    • 参考文献

仅需要网络源码的可以直接跳到末尾即可

1. 算法简介与应用场景

ConvLSTM(卷积长短期记忆网络)是一种结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)优势的深度学习模型。它主要用于处理时空数据,特别适用于需要考虑空间特征和时间依赖关系的任务,如气象预测、视频分析、交通流量预测等。

在气象预测中,ConvLSTM可以根据过去的气象数据(如降水、温度等)预测未来的天气情况。在视频分析中,它可以帮助识别视频中的活动或事件,利用时间序列的连续性和空间信息进行更准确的分析。

2. 算法原理

2.1 LSTM基础

在介绍ConvLSTM之前,先让我们来回归一下什么是长短期记忆网络(LSTM)。LSTM是一种特殊的循环神经网络(RNN),它通过引入门控机制解决了传统RNN在长序列训练中面临的梯度消失和爆炸问题。LSTM单元主要包含三个门:输入门、遗忘门和输出门。这些门控制着信息在单元中的流动,从而有效地记住或遗忘信息。

LSTM的核心公式如下:

  • 遗忘门
    f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = /sigma(W_f /cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)

  • 输入门
    i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = /sigma(W_i /cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi)
    C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) /tilde{C}_t = /tanh(W_C /cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC[ht1,xt]+bC)

  • 单元状态更新
    C t = f t ∗ C t − 1 + i t ∗ C ~ t C_t = f_t /ast C_{t-1} + i_t /ast /tilde{C}_t Ct=ftCt1+itC~t

  • 输出门
    o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = /sigma(W_o /cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo[ht1,xt]+bo)
    h t = o t ∗ tanh ⁡ ( C t ) h_t = o_t /ast /tanh(C_t) ht=ottanh(Ct)

这里, C t C_t Ct 是当前的单元状态, h t h_t ht 是当前的隐藏状态, x t x_t xt 是当前的输入。

2.2 ConvLSTM原理

ConvLSTM在LSTM的基础上引入了卷积操作。传统的LSTM使用全连接层处理输入数据,而ConvLSTM则采用卷积层来处理空间数据。这样,ConvLSTM能够更好地捕捉输入数据中的空间特征。
在这里插入图片描述

2.2.1 ConvLSTM的结构

ConvLSTM的单元结构与LSTM非常相似,但是在每个门的计算中使用了卷积操作。具体来说,ConvLSTM的每个门的公式可以表示为:

i t = σ ( W x i ∗ X t + W h i ∗ H t − 1 + W c i ∘ C t − 1 + b i ) i_t = /sigma (W_{xi} * X_t + W_{hi} * H_{t-1} + W_{ci} /circ C_{t-1} + b_i) it=σ(WxiXt+WhiHt1+WciCt1+bi)
f t = σ ( W x f ∗ X t + W h f ∗ H t − 1 + W c f ∘ C t − 1 + b f ) f_t = /sigma (W_{xf} * X_t + W_{hf} * H_{t-1} + W_{cf} /circ C_{t-1} + b_f) ft=σ(WxfXt+WhfHt1+WcfCt1+bf)
C t = f t ∘ C t − 1 + i t ∘ t a n h ( W x c ∗ X t + W h c ∗ H t − 1 + b c ) C_t = f_t /circ C_{t-1} + i_t /circ tanh(W_{xc} * X_t + W_{hc} * H_{t-1} + b_c) Ct=ftCt1+ittanh(WxcXt+WhcHt1+bc)
o t = σ ( W x o ∗ X t + W h o ∗ H t − 1 + W c o ∘ C t + b o ) o_t = /sigma (W_{xo} * X_t + W_{ho} * H_{t-1} + W_{co} /circ C_t + b_o) ot=σ(WxoXt+WhoHt1+WcoCt+bo)
H t = o t ∘ t a n h ( C t ) H_t = o_t /circ tanh(C_t) Ht=ottanh(Ct)

这里的 所有 W W W都是是卷积权重, b b b是偏置项, σ /sigma σ 是 sigmoid 函数, tanh ⁡ /tanh tanh 是双曲正切函数。。
在这里插入图片描述

2.2.2 卷积操作的优点
  1. 空间特征提取:卷积操作能够有效提取输入数据中的空间特征。对于图像数据,卷积操作可以捕捉局部特征,例如边缘、纹理等,这在时间序列数据中同样适用。

  2. 参数共享:卷积操作通过使用相同的卷积核在不同位置计算特征,从而减少了模型参数的数量,降低了计算复杂度。

  3. 平移不变性:卷积网络对输入数据的平移具有不变性,即相同的特征在不同位置都会被检测到,这对于时空序列数据来说是非常重要的。

2.3 LSTM与ConvLSTM的对比分析

特性LSTMConvLSTM
输入类型一维序列三维数据(时序的图像数据)
处理方式全连接层卷积操作
空间特征捕捉较弱较强
应用场景自然语言处理、时间序列预测图像序列预测、视频分析

2.4 ConvLSTM的应用

ConvLSTM在多个领域中表现出色,特别适合处理具有时空特征的数据。以下是一些主要的应用场景:

  • 气象预测:利用历史气象数据(如温度、湿度、降水等)来预测未来的天气情况。
  • 视频分析:对视频中的动态场景进行建模,识别和预测视频中的活动。
  • 交通流量预测:基于历史交通数据预测未来的交通流量,帮助城市交通管理。
  • 医学影像分析:分析医学影像序列(如CT、MRI)中的变化,辅助疾病诊断。

3. PyTorch代码

以下是ConvLSTM的完整代码,可以直接拿来用:

import torch.nn as nnimport torchclass ConvLSTMCell(nn.Module):    def __init__(self, input_dim, hidden_dim, kernel_size, bias):        """        初始化卷积 LSTM 单元。        参数:        ----------        input_dim: int            输入张量的通道数。        hidden_dim: int            隐藏状态的通道数。        kernel_size: (int, int)            卷积核的大小。        bias: bool            是否添加偏置项。        """        super(ConvLSTMCell, self).__init__()        self.input_dim = input_dim        self.hidden_dim = hidden_dim        self.kernel_size = kernel_size        # 计算填充大小以保持输入和输出尺寸一致        self.padding = kernel_size[0] // 2, kernel_size[1] // 2        self.bias = bias        # 定义卷积层,输入是输入维度加上隐藏维度,输出是4倍的隐藏维度(对应i, f, o, g)        self.conv = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim,                              out_channels=4 * self.hidden_dim,                              kernel_size=self.kernel_size,                              padding=self.padding,                              bias=self.bias)    def forward(self, input_tensor, cur_state):        h_cur, c_cur = cur_state        # 沿着通道轴进行拼接        combined = torch.cat([input_tensor, h_cur], dim=1)        combined_conv = self.conv(combined)        # 将输出分割成四个部分,分别对应输入门、遗忘门、输出门和候选单元状态        cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_dim, dim=1)        i = torch.sigmoid(cc_i)        f = torch.sigmoid(cc_f)        o = torch.sigmoid(cc_o)        g = torch.tanh(cc_g)        # 更新单元状态        c_next = f * c_cur + i * g        # 更新隐藏状态        h_next = o * torch.tanh(c_next)        return h_next, c_next    def init_hidden(self, batch_size, image_size):        height, width = image_size        # 初始化隐藏状态和单元状态为零        return (torch.zeros(batch_size, self.hidden_dim, height, width, device=self.conv.weight.device),                torch.zeros(batch_size, self.hidden_dim, height, width, device=self.conv.weight.device))class ConvLSTM(nn.Module):    """    卷积 LSTM 层。    参数:    ----------    input_dim: 输入通道数    hidden_dim: 隐藏通道数    kernel_size: 卷积核大小    num_layers: LSTM 层的数量    batch_first: 批次是否在第一维    bias: 卷积中是否有偏置项    return_all_layers: 是否返回所有层的计算结果    输入:    ------    一个形状为 B, T, C, H, W 或者 T, B, C, H, W 的张量    输出:    ------    元组包含两个列表(长度为 num_layers 或者长度为 1 如果 return_all_layers 为 False):    0 - layer_output_list 是长度为 T 的每个输出的列表    1 - last_state_list 是最后的状态列表,其中每个元素是一个 (h, c) 对应隐藏状态和记忆状态    示例:    >>> x = torch.rand((32, 10, 64, 128, 128))    >>> convlstm = ConvLSTM(64, 16, 3, 1, True, True, False)    >>> _, last_states = convlstm(x)    >>> h = last_states[0][0]  # 0 表示层索引,0 表示 h 索引    """    def __init__(self, input_dim, hidden_dim, kernel_size, num_layers,                 batch_first=False, bias=True, return_all_layers=False):        super(ConvLSTM, self).__init__()        # 检查 kernel_size 的一致性        self._check_kernel_size_consistency(kernel_size)        # 确保 kernel_size 和 hidden_dim 的长度与层数一致        kernel_size = self._extend_for_multilayer(kernel_size, num_layers)        hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)        if not len(kernel_size) == len(hidden_dim) == num_layers:            raise ValueError('不一致的列表长度。')        self.input_dim = input_dim        self.hidden_dim = hidden_dim        self.kernel_size = kernel_size        self.num_layers = num_layers        self.batch_first = batch_first        self.bias = bias        self.return_all_layers = return_all_layers        # 创建 ConvLSTMCell 列表        cell_list = []        for i in range(0, self.num_layers):            cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1]            cell_list.append(ConvLSTMCell(input_dim=cur_input_dim,                                          hidden_dim=self.hidden_dim[i],                                          kernel_size=self.kernel_size[i],                                          bias=self.bias))        self.cell_list = nn.ModuleList(cell_list)    def forward(self, input_tensor, hidden_state=None):        """        前向传播函数。        参数:        ----------        input_tensor: 输入张量,形状为 (t, b, c, h, w) 或者 (b, t, c, h, w)        hidden_state: 初始隐藏状态,默认为 None        返回:        -------        last_state_list, layer_output        """        if not self.batch_first:            # 改变输入张量的顺序,如果 batch_first 为 False            input_tensor = input_tensor.permute(1, 0, 2, 3, 4)        b, _, _, h, w = input_tensor.size()        # 实现状态化的 ConvLSTM        if hidden_state is not None:            raise NotImplementedError()        else:            # 初始化隐藏状态            hidden_state = self._init_hidden(batch_size=b,                                             image_size=(h, w))        layer_output_list = []        last_state_list = []        seq_len = input_tensor.size(1)        cur_layer_input = input_tensor        for layer_idx in range(self.num_layers):            h, c = hidden_state[layer_idx]            output_inner = []            for t in range(seq_len):                # 在每个时间步上更新状态                h, c = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :],                                                 cur_state=[h, c])                output_inner.append(h)            # 将输出堆叠起来            layer_output = torch.stack(output_inner, dim=1)            cur_layer_input = layer_output            layer_output_list.append(layer_output)            last_state_list.append([h, c])        if not self.return_all_layers:            # 如果不需要返回所有层,则只返回最后一层的输出和状态            layer_output_list = layer_output_list[-1:]            last_state_list = last_state_list[-1:]        return layer_output_list, last_state_list    def _init_hidden(self, batch_size, image_size):        init_states = []        for i in range(self.num_layers):            # 初始化每一层的隐藏状态            init_states.append(self.cell_list[i].init_hidden(batch_size, image_size))        return init_states    @staticmethod    def _check_kernel_size_consistency(kernel_size):        if not (isinstance(kernel_size, tuple) or                (isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):            raise ValueError('`kernel_size` 必须是 tuple 或者 list of tuples')    @staticmethod    def _extend_for_multilayer(param, num_layers):        if not isinstance(param, list):            param = [param] * num_layers        return param

参考文献

[1]Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. (2015). Convolutional LSTM Network: A Machine Learning [2]Approach for Precipitation Nowcasting. Advances in Neural Information Processing Systems, 28.[2]Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.[3]Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

也许您对下面的内容还感兴趣: