深度学习开源数据集整理:超分辨率图像重建

开源 0

深度学习已经成为计算机视觉领域的重要技术,并在图像处理任务中取得了显著的成果。其中,超分辨率图像重建是一项关键任务,旨在通过从低分辨率图像中恢复高分辨率细节,提升图像的视觉质量。为了支持学术研究和实际应用,许多开源数据集被整理和发布,为超分辨率图像重建算法的开发和评估提供了宝贵的资源。本文将介绍一些流行的深度学习开源数据集,并提供相应的源代码供读者参考。

  1. DIV2K
    DIV2K是一个广泛使用的超分辨率图像重建数据集,其中包含了800张高质量的自然图像。该数据集提供了四个不同的子集:DIV2K_train_LR_bicubic、DIV2K_train_LR_unknown、DIV2K_train_HR、DIV2K_valid_HR。其中,DIV2K_train_LR_bicubic和DIV2K_train_LR_unknown是低分辨率图像子集,DIV2K_train_HR和DIV2K_valid_HR是对应的高分辨率图像子集。研究者可以使用这些图像对任意超分辨率算法进行训练和评估。
# 示例代码import tensorflow as tffrom tensorflow.keras.datasets import div2k(x_train_lr

也许您对下面的内容还感兴趣: