阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
文章目录
- 阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
- 简介
- 环境部署
- 下载源码
- 安装环境
- 下载模型
- 测试一下
- 看看效果
- 模型转onnx
- 测试一下生成的onnx模型
- 看看效果
- C++ 推理
简介
DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。
环境部署
下载源码
git clone https://github.com/piddnad/DDColor.git
安装环境
conda create -n ddcolor python=3.9conda activate ddcolorpip install -r requirements.txtpython3 setup.py developpip install modelscopepip install onnxpip install onnxruntime
下载模型
这里下载
或者运行下面的脚本下载:
from modelscope.hub.snapshot_download import snapshot_downloadmodel_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')print('model assets saved to %s'%model_dir)#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt
测试一下
import argparseimport cv2import numpy as npimport osfrom tqdm import tqdmimport torchfrom basicsr.archs.ddcolor_arch import DDColorimport torch.nn.functional as Fclass ImageColorizationPipeline(object): def __init__(self, model_path, input_size=256, model_size='large'): self.input_size = input_size if torch.cuda.is_available(): self.device = torch.device('cuda') else: self.device = torch.device('cpu') if model_size == 'tiny': self.encoder_name = 'convnext-t' else: self.encoder_name = 'convnext-l' self.decoder_type = "MultiScaleColorDecoder" if self.decoder_type == 'MultiScaleColorDecoder': self.model = DDColor( encoder_name=self.encoder_name, decoder_name='MultiScaleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=100, num_scales=3, dec_layers=9, ).to(self.device) else: self.model = DDColor( encoder_name=self.encoder_name, decoder_name='SingleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=256, ).to(self.device) self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False) self.model.eval() @torch.no_grad() def process(self, img): self.height, self.width = img.shape[:2] # print(self.width, self.height) # if self.width * self.height < 100000: # self.input_size = 256 img = (img / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) # resize rgb image -> lab -> get grey -> rgb img = cv2.resize(img, (self.input_size, self.input_size)) img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) # (1, 2, self.height, self.width) output_ab = self.model(tensor_gray_rgb).cpu() # resize ab -> concat original l -> rgb output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) output_img = (output_bgr * 255.0).round().astype(np.uint8) return output_imgdef main(): parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str,default='pretrain/net_g_200000.pth') parser.add_argument('--input_size', type=int,default=512, help='input size for model') parser.add_argument('--model_size', type=str,default='large', help='ddcolor model size') args = parser.parse_args() colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size) img = cv2.imread("./down.jpg") image_out = colorizer.process(img) cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__': main()
python test.py --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt
看看效果
效果看起来非常的nice!
模型转onnx
import argparseimport cv2import numpy as npimport osfrom tqdm import tqdmimport torchfrom basicsr.archs.ddcolor_arch import DDColorimport torch.nn.functional as Fclass ImageColorizationPipeline(object): def __init__(self, model_path, input_size=256, model_size='large'): self.input_size = input_size if torch.cuda.is_available(): self.device = torch.device('cuda') else: self.device = torch.device('cpu') if model_size == 'tiny': self.encoder_name = 'convnext-t' else: self.encoder_name = 'convnext-l' self.decoder_type = "MultiScaleColorDecoder" if self.decoder_type == 'MultiScaleColorDecoder': self.model = DDColor( encoder_name=self.encoder_name, decoder_name='MultiScaleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=100, num_scales=3, dec_layers=9, ).to(self.device) else: self.model = DDColor( encoder_name=self.encoder_name, decoder_name='SingleColorDecoder', input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=256, ).to(self.device) print(model_path) self.model.load_state_dict( torch.load(model_path, map_location=torch.device('cpu'))['params'], strict=False) self.model.eval() @torch.no_grad() def process(self, img): self.height, self.width = img.shape[:2] # print(self.width, self.height) # if self.width * self.height < 100000: # self.input_size = 256 img = (img / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) # resize rgb image -> lab -> get grey -> rgb img = cv2.resize(img, (self.input_size, self.input_size)) img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width) # resize ab -> concat original l -> rgb output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) output_img = (output_bgr * 255.0).round().astype(np.uint8) return output_img @torch.no_grad() def expirt_onnx(self, img): self.height, self.width = img.shape[:2] img = (img / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) # resize rgb image -> lab -> get grey -> rgb img = cv2.resize(img, (self.input_size, self.input_size)) img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) mymodel = self.model.to('cpu') tensor_gray_rgb = tensor_gray_rgb.to('cpu') onnx_save_path = "color.onnx" torch.onnx.export(mymodel, # 要导出的模型 tensor_gray_rgb, # 模型的输入 onnx_save_path, # 导出的文件路径 export_params=True, # 是否将训练参数导出 opset_version=12, # 导出的ONNX的操作集版本 do_constant_folding=True, # 是否执行常量折叠优化 input_names=['input'], # 输入张量的名称 output_names=['output'], # 输出张量的名称 dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) returndef main(): parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth') parser.add_argument('--input_size', type=int, default=512, help='input size for model') parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size') args = parser.parse_args() colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size) img = cv2.imread("./down.jpg") image_out = colorizer.expirt_onnx(img) # image_out = colorizer.process(img) # cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__': main()
python model2onnx.py --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt
测试一下生成的onnx模型
import onnxruntimeimport cv2import numpy as npdef colorize_image(input_image_path, output_image_path, model_path): input_image = cv2.imread(input_image_path) img = (input_image / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) img = cv2.resize(img, (512, 512)) img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) input_blob = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) # Change data layout from HWC to CHW input_blob = np.transpose(input_blob, (2, 0, 1)) input_blob = np.expand_dims(input_blob, axis=0) # Add batch dimension # Initialize ONNX Runtime Inference Session session = onnxruntime.InferenceSession(model_path) # Perform inference output_blob = session.run(None, {'input': input_blob})[0] # Post-process the output output_blob = np.squeeze(output_blob) # Remove batch dimension # Separate ab channels # Change data layout from CHW to HWC output_ab = output_blob.transpose((1, 2, 0)) # Resize to match input image size output_ab = cv2.resize(output_ab, (input_image.shape[1], input_image.shape[0])) output_lab = np.concatenate((orig_l, output_ab), axis=-1) # Convert LAB to BGR output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) output_bgr = output_bgr*255 # Save the colorized image cv2.imwrite(output_image_path, output_bgr)# Define pathsinput_image_path = 'down.jpg'output_image_path = 'downout2.jpg'model_path = 'color.onnx'# Perform colorizationcolorize_image(input_image_path, output_image_path, model_path)
python testonnx.py
看看效果
嗯,模型没有问题,下面开始用c++推理
C++ 推理
#pragma once#include <iostream>#include <assert.h>#include <vector>#include <onnxruntime_cxx_api.h>#include <opencv2/opencv.hpp>namespace LIANGBAIKAI_BASE_MODEL_NAME{ class ONNX_DDcolor { public: ONNX_DDcolor() : session(nullptr){}; virtual ~ONNX_DDcolor() = default; /*初始化 * @param model_path 模型 * @param gpu_id 选择用那块GPU */ void Init(const char *model_path, int gpu_id = 0) { env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "ONNX_DDcolor"); Ort::SessionOptions session_options; // 使用五个线程执行op,提升速度 session_options.SetIntraOpNumThreads(5); session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); if (gpu_id >= 0) { OrtCUDAProviderOptions cuda_option; cuda_option.device_id = gpu_id; session_options.AppendExecutionProvider_CUDA(cuda_option); } session = Ort::Session(env, model_path, session_options); return; } /**执行模型推理 * @param src : 输入图 * @param inputid : 输入id * @param outputid : 输出的id * @return 输出结果图 */ cv::Mat Run(cv::Mat src, unsigned inputid = 0, unsigned outputid = 0, bool show_log = false) { cv::Mat img; src.convertTo(img, CV_32FC3, 1.0/255.0); // 拷贝图片并将图片由 BGR 转为 LAB,分离出L通道 cv::Mat orig_lab; cv::cvtColor(img, orig_lab, cv::COLOR_BGR2Lab); cv::Mat orig_l = orig_lab.clone(); cv::extractChannel(orig_lab, orig_l, 0); // 分离出 L 通道 cv::resize(img, img, cv::Size(512, 512)); //将图片由RGB转为Lab,然后将ab通道用同尺寸的0矩阵代替,最后再将图片转回rgb cv::Mat img_lab; cv::cvtColor(img, img_lab, cv::COLOR_BGR2Lab); std::vector<cv::Mat> lab_planes; cv::split(img_lab, lab_planes); cv::Mat img_gray_lab = cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32FC3); std::vector<cv::Mat> img_channels = {lab_planes[0], cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F), cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F)}; cv::merge(img_channels, img_gray_lab); // Convert LAB to RGB cv::Mat input_blob; cv::cvtColor(img_gray_lab, input_blob, cv::COLOR_Lab2RGB); //将input_blob送入神经网络输入,进行推理 int64_t H = input_blob.rows; int64_t W = input_blob.cols; cv::Mat blob; cv::dnn::blobFromImage(input_blob, blob, 1.0 , cv::Size(W, H), cv::Scalar(0, 0, 0), false, true); // 创建tensor size_t input_tensor_size = blob.total(); std::vector<float> input_tensor_values(input_tensor_size); // overwrite input dims std::vector<int64_t> input_node_dims = GetInputOrOutputShape("input", inputid, show_log); input_node_dims[0] = 1; input_node_dims[2] = W; input_node_dims[3] = H; for (size_t i = 0; i < input_tensor_size; ++i) { input_tensor_values[i] = blob.at<float>(i); // std::cout <<" " << input_tensor_values[i] ; } // std::cout << std::endl; // 查看输入的shape if (show_log) { std::cout << "shape:"; for (auto &i : input_node_dims) { std::cout << " " << i; } std::cout << std::endl; std::cout << "input_tensor_size: " << input_tensor_size << std::endl; } auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); auto input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size()); std::string input_name = GetInputOrOutputName("input", inputid, show_log); std::string output_name = GetInputOrOutputName("output", outputid, show_log); const char *inputname[] = {input_name.c_str()}; // 输入节点名 const char *outputname[] = {output_name.c_str()}; // 输出节点名 std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{nullptr}, inputname, &input_tensor, 1, outputname, 1); if (show_log) { // 显示有几个输出的结果 std::cout << "output_tensor_size: " << output_tensor.size() << std::endl; } // 获取output的shape Ort::TensorTypeAndShapeInfo shape_info = output_tensor[0].GetTensorTypeAndShapeInfo(); // 获取output的dim size_t dim_count = shape_info.GetDimensionsCount(); if (show_log) { std::cout << dim_count << std::endl; } auto shape = shape_info.GetShape(); if (show_log) { // 显示输出的shape信息 std::cout << "shape: "; for (auto &i : shape) { std::cout << i << " "; } std::cout << std::endl; } // 取output数据 float *f = output_tensor[0].GetTensorMutableData<float>(); int output_width = shape[2]; int output_height = shape[3]; int size_pic = output_width * output_height; cv::Mat fin_img; std::vector<cv::Mat> abChannels(2); abChannels[0] = cv::Mat(output_height, output_width, CV_32FC1, f); abChannels[1] = cv::Mat(output_height, output_width, CV_32FC1, f + size_pic); merge(abChannels, fin_img); cv::Mat output_ab; cv::resize(fin_img, output_ab, cv::Size(src.cols, src.rows)); // Concatenate L and ab channels std::vector<cv::Mat> output_channels = {orig_l, output_ab}; cv::Mat output_lab; cv::merge(output_channels, output_lab); // Convert LAB to BGR cv::Mat output_bgr; cv::cvtColor(output_lab, output_bgr, cv::COLOR_Lab2BGR); output_bgr.convertTo(output_bgr, CV_8UC3, 255); return output_bgr; } private: /*获取模型的inputname 或者 outputname * @param input_or_output 选择要获取的是input还是output * @param id 选择要返回的是第几个name * @param show_log 是否打印信息 * @return 返回name */ std::string GetInputOrOutputName(std::string input_or_output = "input", unsigned id = 0, bool show_log = false) { size_t num_input_nodes = session.GetInputCount(); size_t num_output_nodes = session.GetOutputCount(); if (show_log) { // 显示模型有几个输入几个输出 std::cout << "num_input_nodes:" << num_input_nodes << std::endl; std::cout << "num_output_nodes:" << num_output_nodes << std::endl; } std::vector<const char *> input_node_names(num_input_nodes); std::vector<const char *> output_node_names(num_output_nodes); Ort::AllocatorWithDefaultOptions allocator; std::string name; if (input_or_output == "input") { Ort::AllocatedStringPtr input_name_Ptr = session.GetInputNameAllocated(id, allocator); name = input_name_Ptr.get(); } else { auto output_name_Ptr = session.GetOutputNameAllocated(id, allocator); name = output_name_Ptr.get(); } if (show_log) { std::cout << "name:" << name << std::endl; } return name; } /*获取模型的input或者output的shape信息 * @param input_or_output 选择要获取的是input还是output * @param id 选择要返回的是第几个shape * @param show_log 是否打印信息 * @return 返回shape信息 */ std::vector<int64_t> GetInputOrOutputShape(std::string input_or_output = "input", unsigned id = 0, bool show_log = false) { std::vector<int64_t> shape; if (input_or_output == "input") { Ort::TypeInfo type_info = session.GetInputTypeInfo(id); auto tensor_info = type_info.GetTensorTypeAndShapeInfo(); // 得到输入节点的数据类型 ONNXTensorElementDataType type = tensor_info.GetElementType(); if (show_log) { std::cout << "input_type: " << type << std::endl; } shape = tensor_info.GetShape(); if (show_log) { std::cout << "intput shape:"; for (auto &i : shape) { std::cout << " " << i; } std::cout << std::endl; } } else { Ort::TypeInfo type_info_out = session.GetOutputTypeInfo(id); auto tensor_info_out = type_info_out.GetTensorTypeAndShapeInfo(); // 得到输出节点的数据类型 ONNXTensorElementDataType type_out = tensor_info_out.GetElementType(); if (show_log) { std::cout << "output type: " << type_out << std::endl; } // 得到输出节点的输入维度 std::vector<int64_t> shape = tensor_info_out.GetShape(); if (show_log) { std::cout << "output shape:"; for (auto &i : shape) { std::cout << " " << i; } std::cout << std::endl; } } return shape; } mutable Ort::Session session; Ort::Env env; };}
测试没有问题,成功!