阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

开源 0

阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

文章目录

  • 阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
    • 简介
    • 环境部署
      • 下载源码
      • 安装环境
      • 下载模型
    • 测试一下
    • 看看效果
    • 模型转onnx
    • 测试一下生成的onnx模型
    • 看看效果
    • C++ 推理

简介

DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。

环境部署

下载源码

git clone https://github.com/piddnad/DDColor.git

安装环境

conda create -n ddcolor python=3.9conda activate ddcolorpip install -r requirements.txtpython3 setup.py developpip install modelscopepip install onnxpip install onnxruntime

下载模型

这里下载
或者运行下面的脚本下载:

from modelscope.hub.snapshot_download import snapshot_downloadmodel_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')print('model assets saved to %s'%model_dir)#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下

import argparseimport cv2import numpy as npimport osfrom tqdm import tqdmimport torchfrom basicsr.archs.ddcolor_arch import DDColorimport torch.nn.functional as Fclass ImageColorizationPipeline(object):    def __init__(self, model_path, input_size=256, model_size='large'):        self.input_size = input_size        if torch.cuda.is_available():            self.device = torch.device('cuda')        else:            self.device = torch.device('cpu')        if model_size == 'tiny':            self.encoder_name = 'convnext-t'        else:            self.encoder_name = 'convnext-l'        self.decoder_type = "MultiScaleColorDecoder"        if self.decoder_type == 'MultiScaleColorDecoder':            self.model = DDColor(                encoder_name=self.encoder_name,                decoder_name='MultiScaleColorDecoder',                input_size=[self.input_size, self.input_size],                num_output_channels=2,                last_norm='Spectral',                do_normalize=False,                num_queries=100,                num_scales=3,                dec_layers=9,            ).to(self.device)        else:            self.model = DDColor(                encoder_name=self.encoder_name,                decoder_name='SingleColorDecoder',                input_size=[self.input_size, self.input_size],                num_output_channels=2,                last_norm='Spectral',                do_normalize=False,                num_queries=256,            ).to(self.device)        self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)        self.model.eval()    @torch.no_grad()    def process(self, img):        self.height, self.width = img.shape[:2]        # print(self.width, self.height)        # if self.width * self.height < 100000:        #     self.input_size = 256        img = (img / 255.0).astype(np.float32)        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)        # resize rgb image -> lab -> get grey -> rgb        img = cv2.resize(img, (self.input_size, self.input_size))        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)        # (1, 2, self.height, self.width)        output_ab = self.model(tensor_gray_rgb).cpu()        # resize ab -> concat original l -> rgb        output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)        output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)        output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)        output_img = (output_bgr * 255.0).round().astype(np.uint8)        return output_imgdef main():    parser = argparse.ArgumentParser()    parser.add_argument('--model_path', type=str,default='pretrain/net_g_200000.pth')    parser.add_argument('--input_size', type=int,default=512, help='input size for model')    parser.add_argument('--model_size', type=str,default='large', help='ddcolor model size')    args = parser.parse_args()    colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)    img = cv2.imread("./down.jpg")    image_out = colorizer.process(img)    cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':    main()
python test.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

看看效果

在这里插入图片描述

在这里插入图片描述
效果看起来非常的nice!

模型转onnx

import argparseimport cv2import numpy as npimport osfrom tqdm import tqdmimport torchfrom basicsr.archs.ddcolor_arch import DDColorimport torch.nn.functional as Fclass ImageColorizationPipeline(object):    def __init__(self, model_path, input_size=256, model_size='large'):                self.input_size = input_size        if torch.cuda.is_available():            self.device = torch.device('cuda')        else:            self.device = torch.device('cpu')        if model_size == 'tiny':            self.encoder_name = 'convnext-t'        else:            self.encoder_name = 'convnext-l'        self.decoder_type = "MultiScaleColorDecoder"        if self.decoder_type == 'MultiScaleColorDecoder':            self.model = DDColor(                encoder_name=self.encoder_name,                decoder_name='MultiScaleColorDecoder',                input_size=[self.input_size, self.input_size],                num_output_channels=2,                last_norm='Spectral',                do_normalize=False,                num_queries=100,                num_scales=3,                dec_layers=9,            ).to(self.device)        else:            self.model = DDColor(                encoder_name=self.encoder_name,                decoder_name='SingleColorDecoder',                input_size=[self.input_size, self.input_size],                num_output_channels=2,                last_norm='Spectral',                do_normalize=False,                num_queries=256,            ).to(self.device)        print(model_path)        self.model.load_state_dict(            torch.load(model_path, map_location=torch.device('cpu'))['params'],            strict=False)        self.model.eval()    @torch.no_grad()    def process(self, img):        self.height, self.width = img.shape[:2]        # print(self.width, self.height)        # if self.width * self.height < 100000:        #     self.input_size = 256        img = (img / 255.0).astype(np.float32)        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)        # resize rgb image -> lab -> get grey -> rgb        img = cv2.resize(img, (self.input_size, self.input_size))        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)        output_ab = self.model(tensor_gray_rgb).cpu()  # (1, 2, self.height, self.width)                # resize ab -> concat original l -> rgb        output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)        output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)        output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)        output_img = (output_bgr * 255.0).round().astype(np.uint8)            return output_img    @torch.no_grad()    def expirt_onnx(self, img):        self.height, self.width = img.shape[:2]                img = (img / 255.0).astype(np.float32)        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)        # resize rgb image -> lab -> get grey -> rgb        img = cv2.resize(img, (self.input_size, self.input_size))        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)                mymodel = self.model.to('cpu')        tensor_gray_rgb = tensor_gray_rgb.to('cpu')        onnx_save_path = "color.onnx"        torch.onnx.export(mymodel,  # 要导出的模型                          tensor_gray_rgb,  # 模型的输入                          onnx_save_path,  # 导出的文件路径                          export_params=True,  # 是否将训练参数导出                          opset_version=12,  # 导出的ONNX的操作集版本                          do_constant_folding=True,  # 是否执行常量折叠优化                          input_names=['input'],  # 输入张量的名称                          output_names=['output'],  # 输出张量的名称                          dynamic_axes={'input': {0: 'batch_size'},                                         'output': {0: 'batch_size'}})        returndef main():    parser = argparse.ArgumentParser()    parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth')    parser.add_argument('--input_size', type=int, default=512, help='input size for model')    parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size')    args = parser.parse_args()    colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)    img = cv2.imread("./down.jpg")    image_out = colorizer.expirt_onnx(img)    # image_out = colorizer.process(img)    # cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':    main()
python model2onnx.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下生成的onnx模型

import onnxruntimeimport cv2import numpy as npdef colorize_image(input_image_path, output_image_path, model_path):    input_image = cv2.imread(input_image_path)    img = (input_image / 255.0).astype(np.float32)    orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)    img = cv2.resize(img, (512, 512))    img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]    img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)    input_blob = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)    # Change data layout from HWC to CHW    input_blob = np.transpose(input_blob, (2, 0, 1))    input_blob = np.expand_dims(input_blob, axis=0)  # Add batch dimension    # Initialize ONNX Runtime Inference Session    session = onnxruntime.InferenceSession(model_path)    # Perform inference    output_blob = session.run(None, {'input': input_blob})[0]    # Post-process the output    output_blob = np.squeeze(output_blob)  # Remove batch dimension    # Separate ab channels    # Change data layout from CHW to HWC    output_ab = output_blob.transpose((1, 2, 0))    # Resize to match input image size    output_ab = cv2.resize(output_ab, (input_image.shape[1], input_image.shape[0]))    output_lab = np.concatenate((orig_l, output_ab), axis=-1)    # Convert LAB to BGR    output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)    output_bgr = output_bgr*255    # Save the colorized image    cv2.imwrite(output_image_path, output_bgr)# Define pathsinput_image_path = 'down.jpg'output_image_path = 'downout2.jpg'model_path = 'color.onnx'# Perform colorizationcolorize_image(input_image_path, output_image_path, model_path)
python testonnx.py

看看效果

在这里插入图片描述
嗯,模型没有问题,下面开始用c++推理

C++ 推理

#pragma once#include <iostream>#include <assert.h>#include <vector>#include <onnxruntime_cxx_api.h>#include <opencv2/opencv.hpp>namespace LIANGBAIKAI_BASE_MODEL_NAME{    class ONNX_DDcolor    {    public:        ONNX_DDcolor() : session(nullptr){};        virtual ~ONNX_DDcolor() = default;        /*初始化         * @param model_path 模型         * @param gpu_id 选择用那块GPU         */        void Init(const char *model_path, int gpu_id = 0)        {            env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "ONNX_DDcolor");            Ort::SessionOptions session_options;            // 使用五个线程执行op,提升速度            session_options.SetIntraOpNumThreads(5);            session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);            if (gpu_id >= 0)            {                OrtCUDAProviderOptions cuda_option;                cuda_option.device_id = gpu_id;                session_options.AppendExecutionProvider_CUDA(cuda_option);            }            session = Ort::Session(env, model_path, session_options);            return;        }        /**执行模型推理         * @param src : 输入图         * @param inputid : 输入id         * @param outputid : 输出的id         * @return 输出结果图         */        cv::Mat Run(cv::Mat src, unsigned inputid = 0, unsigned outputid = 0, bool show_log = false)        {            cv::Mat img;            src.convertTo(img, CV_32FC3, 1.0/255.0);            // 拷贝图片并将图片由 BGR 转为 LAB,分离出L通道            cv::Mat orig_lab;            cv::cvtColor(img, orig_lab, cv::COLOR_BGR2Lab);            cv::Mat orig_l = orig_lab.clone();            cv::extractChannel(orig_lab, orig_l, 0); // 分离出 L 通道            cv::resize(img, img, cv::Size(512, 512));                        //将图片由RGB转为Lab,然后将ab通道用同尺寸的0矩阵代替,最后再将图片转回rgb            cv::Mat img_lab;            cv::cvtColor(img, img_lab, cv::COLOR_BGR2Lab);            std::vector<cv::Mat> lab_planes;            cv::split(img_lab, lab_planes);            cv::Mat img_gray_lab = cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32FC3);            std::vector<cv::Mat> img_channels = {lab_planes[0], cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F), cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F)};            cv::merge(img_channels, img_gray_lab);            // Convert LAB to RGB            cv::Mat input_blob;            cv::cvtColor(img_gray_lab, input_blob, cv::COLOR_Lab2RGB);            //将input_blob送入神经网络输入,进行推理            int64_t H = input_blob.rows;            int64_t W = input_blob.cols;            cv::Mat blob;            cv::dnn::blobFromImage(input_blob, blob, 1.0 , cv::Size(W, H), cv::Scalar(0, 0, 0), false, true);            // 创建tensor            size_t input_tensor_size = blob.total();            std::vector<float> input_tensor_values(input_tensor_size);            // overwrite input dims            std::vector<int64_t> input_node_dims = GetInputOrOutputShape("input", inputid, show_log);            input_node_dims[0] = 1;            input_node_dims[2] = W;            input_node_dims[3] = H;            for (size_t i = 0; i < input_tensor_size; ++i)            {                input_tensor_values[i] = blob.at<float>(i);                // std::cout <<" " << input_tensor_values[i] ;            }            // std::cout << std::endl;            // 查看输入的shape            if (show_log)            {                std::cout << "shape:";                for (auto &i : input_node_dims)                {                    std::cout << " " << i;                }                std::cout << std::endl;                std::cout << "input_tensor_size: " << input_tensor_size << std::endl;            }            auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);            auto input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size());            std::string input_name = GetInputOrOutputName("input", inputid, show_log);            std::string output_name = GetInputOrOutputName("output", outputid, show_log);            const char *inputname[] = {input_name.c_str()};   // 输入节点名            const char *outputname[] = {output_name.c_str()}; // 输出节点名            std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{nullptr}, inputname, &input_tensor, 1, outputname, 1);            if (show_log)            {                // 显示有几个输出的结果                std::cout << "output_tensor_size: " << output_tensor.size() << std::endl;            }            // 获取output的shape            Ort::TensorTypeAndShapeInfo shape_info = output_tensor[0].GetTensorTypeAndShapeInfo();            // 获取output的dim            size_t dim_count = shape_info.GetDimensionsCount();            if (show_log)            {                std::cout << dim_count << std::endl;            }            auto shape = shape_info.GetShape();            if (show_log)            {                // 显示输出的shape信息                std::cout << "shape: ";                for (auto &i : shape)                {                    std::cout << i << " ";                }                std::cout << std::endl;            }            // 取output数据            float *f = output_tensor[0].GetTensorMutableData<float>();            int output_width = shape[2];            int output_height = shape[3];            int size_pic = output_width * output_height;            cv::Mat fin_img;            std::vector<cv::Mat> abChannels(2);            abChannels[0] = cv::Mat(output_height, output_width, CV_32FC1, f);            abChannels[1] = cv::Mat(output_height, output_width, CV_32FC1, f + size_pic);            merge(abChannels, fin_img);            cv::Mat output_ab;            cv::resize(fin_img, output_ab, cv::Size(src.cols, src.rows));            // Concatenate L and ab channels            std::vector<cv::Mat> output_channels = {orig_l, output_ab};            cv::Mat output_lab;            cv::merge(output_channels, output_lab);            // Convert LAB to BGR            cv::Mat output_bgr;            cv::cvtColor(output_lab, output_bgr, cv::COLOR_Lab2BGR);            output_bgr.convertTo(output_bgr, CV_8UC3, 255);            return output_bgr;        }    private:        /*获取模型的inputname 或者 outputname         * @param input_or_output  选择要获取的是input还是output         * @param id 选择要返回的是第几个name         * @param show_log 是否打印信息         * @return 返回name         */        std::string GetInputOrOutputName(std::string input_or_output = "input", unsigned id = 0, bool show_log = false)        {            size_t num_input_nodes = session.GetInputCount();            size_t num_output_nodes = session.GetOutputCount();            if (show_log)            {                // 显示模型有几个输入几个输出                std::cout << "num_input_nodes:" << num_input_nodes << std::endl;                std::cout << "num_output_nodes:" << num_output_nodes << std::endl;            }            std::vector<const char *> input_node_names(num_input_nodes);            std::vector<const char *> output_node_names(num_output_nodes);            Ort::AllocatorWithDefaultOptions allocator;            std::string name;            if (input_or_output == "input")            {                Ort::AllocatedStringPtr input_name_Ptr = session.GetInputNameAllocated(id, allocator);                name = input_name_Ptr.get();            }            else            {                auto output_name_Ptr = session.GetOutputNameAllocated(id, allocator);                name = output_name_Ptr.get();            }            if (show_log)            {                std::cout << "name:" << name << std::endl;            }            return name;        }        /*获取模型的input或者output的shape信息         * @param input_or_output  选择要获取的是input还是output         * @param id 选择要返回的是第几个shape         * @param show_log 是否打印信息         * @return 返回shape信息         */        std::vector<int64_t> GetInputOrOutputShape(std::string input_or_output = "input", unsigned id = 0, bool show_log = false)        {            std::vector<int64_t> shape;            if (input_or_output == "input")            {                Ort::TypeInfo type_info = session.GetInputTypeInfo(id);                auto tensor_info = type_info.GetTensorTypeAndShapeInfo();                // 得到输入节点的数据类型                ONNXTensorElementDataType type = tensor_info.GetElementType();                if (show_log)                {                    std::cout << "input_type: " << type << std::endl;                }                shape = tensor_info.GetShape();                if (show_log)                {                    std::cout << "intput shape:";                    for (auto &i : shape)                    {                        std::cout << " " << i;                    }                    std::cout << std::endl;                }            }            else            {                Ort::TypeInfo type_info_out = session.GetOutputTypeInfo(id);                auto tensor_info_out = type_info_out.GetTensorTypeAndShapeInfo();                // 得到输出节点的数据类型                ONNXTensorElementDataType type_out = tensor_info_out.GetElementType();                if (show_log)                {                    std::cout << "output type: " << type_out << std::endl;                }                // 得到输出节点的输入维度 std::vector<int64_t>                shape = tensor_info_out.GetShape();                if (show_log)                {                    std::cout << "output shape:";                    for (auto &i : shape)                    {                        std::cout << " " << i;                    }                    std::cout << std::endl;                }            }            return shape;        }        mutable Ort::Session session;        Ort::Env env;     };}

测试没有问题,成功!

也许您对下面的内容还感兴趣: