微软开源GraphRAG的使用教程(最全,非常详细)

开源 0

GraphRAG的介绍

目前微软已经开源了GraphRAG的完整项目代码。对于某一些LLM的下游任务则可以使用GraphRAG去增强自己业务的RAG的表现。项目给出了两种使用方式:

  1. 在打包好的项目状态下运行,可进行尝试使用。
  2. 在源码基础上运行,适合为了下游任务的微调时使用。
    如果需要利用Ollama部署本地大模型的可以参考我的另一篇博客
    以下在通过自身的实践之后的给出对这两种方式的使用教程,如果还有什么问题在评论区交流。

一、在源码基础上运行(便于后续修改)

1. 准备环境(在终端运行)

(1)创建虚拟环境(已安装好anaconda),此处建议使用python3.11:

conda create -n GraphRAG python=3.11conda activate GraphRAG

2. 下载源码并进入目录

git clone https://github.com/microsoft/graphrag.git   cd graphrag

3. 下载依赖并初始化项目

(1)安装poetry资源包管理工具及相关依赖:

pip install poetry poetry install

(2)初始化

poetry run poe index --init --root .   

正确运行后,此处会在graphrag目录下生成output、prompts、.env、settings.yaml文件

4. 下载并将待检索的文档document放入./input/目录下

mkdir ./inputcurl https://www.xxx.com/xxx.txt > ./input/book.txt  #示例,可以替换为任何的txt文件

5.修改相关配置文件

(1)修改.env文件(默认是隐藏的)中的api_key

vi .env  #进入.env文件,并修改为自己的api_key

修改后是全局配置,后续不需要再次修改了

(2)修改settings.yaml文件,修改其中的使用的llm模型和对应的api_base

提前说明,因为GraphRAG需要多次调用大模型和Embedding,默认使用的是openai的GPT-4,花费及其昂贵(土豪当我没说,配置也不需要改 ),建议大家可以使用其他模型或国产大模型的api

我这里使用的是agicto提供的APIkey(主要是新用户注册可以免费获取到10块钱的调用额度,白嫖还是挺爽的)。我在这里主要就修改了API地址和调用模型的名称,修改完成后的settings文件完整内容如下:

(代码行后有标记的为需要修改的地方),如果用的是agicto则则不用修改settings.yaml

encoding_model: cl100k_baseskip_workflows: []llm:  api_key: ${GRAPHRAG_API_KEY}  type: openai_chat # or azure_openai_chat  model: deepseek-chat  #修改  model_supports_json: false # recommended if this is available for your model.  api_base: https://api.agicto.cn/v1 #修改  # max_tokens: 4000  # request_timeout: 180.0  # api_version: 2024-02-15-preview  # organization: <organization_id>  # deployment_name: <azure_model_deployment_name>  # tokens_per_minute: 150_000 # set a leaky bucket throttle  # requests_per_minute: 10_000 # set a leaky bucket throttle  # max_retries: 10  # max_retry_wait: 10.0  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times  # concurrent_requests: 25 # the number of parallel inflight requests that may be madeparallelization:  stagger: 0.3  # num_threads: 50 # the number of threads to use for parallel processingasync_mode: threaded # or asyncioembeddings:  ## parallelization: override the global parallelization settings for embeddings  async_mode: threaded # or asyncio  llm:    api_key: ${GRAPHRAG_API_KEY}    type: openai_embedding # or azure_openai_embedding    model: text-embedding-3-small #修改    api_base: https://api.agicto.cn/v1 #修改    # api_base: https://<instance>.openai.azure.com    # api_version: 2024-02-15-preview    # organization: <organization_id>    # deployment_name: <azure_model_deployment_name>    # tokens_per_minute: 150_000 # set a leaky bucket throttle    # requests_per_minute: 10_000 # set a leaky bucket throttle    # max_retries: 10    # max_retry_wait: 10.0    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times    # concurrent_requests: 25 # the number of parallel inflight requests that may be made    # batch_size: 16 # the number of documents to send in a single request    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request    # target: required # or optional  chunks:  size: 300  overlap: 100  group_by_columns: [id] # by default, we don't allow chunks to cross documents    input:  type: file # or blob  file_type: text # or csv  base_dir: "input"  file_encoding: utf-8  file_pattern: ".*//.txt$"cache:  type: file # or blob  base_dir: "cache"  # connection_string: <azure_blob_storage_connection_string>  # container_name: <azure_blob_storage_container_name>storage:  type: file # or blob  base_dir: "output/${timestamp}/artifacts"  # connection_string: <azure_blob_storage_connection_string>  # container_name: <azure_blob_storage_container_name>reporting:  type: file # or console, blob  base_dir: "output/${timestamp}/reports"  # connection_string: <azure_blob_storage_connection_string>  # container_name: <azure_blob_storage_container_name>entity_extraction:  ## llm: override the global llm settings for this task  ## parallelization: override the global parallelization settings for this task  ## async_mode: override the global async_mode settings for this task  prompt: "prompts/entity_extraction.txt"  entity_types: [organization,person,geo,event]  max_gleanings: 0summarize_descriptions:  ## llm: override the global llm settings for this task  ## parallelization: override the global parallelization settings for this task  ## async_mode: override the global async_mode settings for this task  prompt: "prompts/summarize_descriptions.txt"  max_length: 500claim_extraction:  ## llm: override the global llm settings for this task  ## parallelization: override the global parallelization settings for this task  ## async_mode: override the global async_mode settings for this task  # enabled: true  prompt: "prompts/claim_extraction.txt"  description: "Any claims or facts that could be relevant to information discovery."  max_gleanings: 0community_report:  ## llm: override the global llm settings for this task  ## parallelization: override the global parallelization settings for this task  ## async_mode: override the global async_mode settings for this task  prompt: "prompts/community_report.txt"  max_length: 2000  max_input_length: 8000cluster_graph:  max_cluster_size: 10embed_graph:  enabled: false # if true, will generate node2vec embeddings for nodes  # num_walks: 10  # walk_length: 40  # window_size: 2  # iterations: 3  # random_seed: 597832umap:  enabled: false # if true, will generate UMAP embeddings for nodessnapshots:  graphml: false  raw_entities: false  top_level_nodes: falselocal_search:  # text_unit_prop: 0.5  # community_prop: 0.1  # conversation_history_max_turns: 5  # top_k_mapped_entities: 10  # top_k_relationships: 10  # max_tokens: 12000global_search:  # max_tokens: 12000  # data_max_tokens: 12000  # map_max_tokens: 1000  # reduce_max_tokens: 2000  # concurrency: 32

6.构建GraphRAG的索引(耗时较长,取决于document的长度)

poetry run poe index --root .   

成功后如下:

⠋ GraphRAG Indexer ├── Loading Input (InputFileType.text) - 1 files loaded (0 filtered) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 0:00:00├── create_base_text_units├── create_base_extracted_entities├── create_summarized_entities├── create_base_entity_graph├── create_final_entities├── create_final_nodes├── create_final_communities├── join_text_units_to_entity_ids├── create_final_relationships├── join_text_units_to_relationship_ids├── create_final_community_reports├── create_final_text_units├── create_base_documents└── create_final_documents🚀 All workflows completed successfully.

7.进行查询

此处GraphRAG提供了两种查询方式
1)全局查询 :更侧重全文理解

poetry run poe query --root . --method global "本文主要讲了什么"   

运行成功后可以看到输出结果

2)局部查询:更侧重细节

poetry run poe query --root . --method local "本文主要讲了什么"   

运行成功后可以看到输出结果

8. 总结

上述过程为已经验证过的,如果报错可以检查是否正确配置api_key及api_base

二、在python包的基础上进行(快速尝试)

1. 环境安装

pip install graphrag

2. 初始化项目

创建一个临时的文件夹graphrag,用于存在运行时数据

mkdir ./graphrag/inputcurl https://www.xxx.com/xxx.txt > ./myTest/input/book.txt  // 这里是示例代码,根据实际情况放入自己要测试的txt文本即可。cd ./graphragpython -m graphrag.index --init

3. 配置相关文件(可参考上述的配置文件过程)

4. 执行并构建图索引

python -m graphrag.index

5.进行查询

1)全局查询

python -m graphrag.query --root ../myTest --method global "这篇文章主要讲述了什么内容?"

2)局部查询

python -m graphrag.query --root ../myTest --method local "这篇文章主要讲述了什么内容?"

总结

通过以上两种方式,我们已经尝试了利用源码和python资源包进行配置GraphRAG的方式。大家可以按照自己的需求尝试以上两种方法。如果还有问题,欢迎在评论区讨论!

也许您对下面的内容还感兴趣: