一、先看效果
【跑跑步】微信小程序
二、实现功能
【跑跑步】是一款基于Uniapp开发的微信小程序,主要实现了跑步轨迹记录、历史轨迹、轨迹纠偏、轨迹回放和轨迹排名等功能。室内跑步记录正在开发,还没有发布,主要利用手机加速度传感器实现计步功能。更多干货请关注公众号:小蝇工作室
1、轨迹记录
轨迹记录主要用到微信小程序的startLocationUpdateBackground和onLocationChange两个API接口,该接口实现了前后台GPS定位,连续采集用户的跑步定位信息,然后通过map组件把轨迹绘制出来。
//前后台定位接口wx.startLocationUpdateBackground(callback) { var that = this; success(res) { //开始监听GPS数据 that.onLocationChange(); }, fail(res) { //授权失败后引导用户打开定位信息 ... }})//监听GPS数据的变化onLocationChange() { var that = this; var points = []; var paths = []; wx.onLocationChange(function(res) { res.time = Date.now(); points.push(res); that.latitude = res.latitude; that.longitude = res.longitude; if (that.scale = 3) { that.scale = 18; } paths = filterGPSPoints(points); paths = douglasPeucker(paths, 3); that.playRunAudio(); uni.setStorage({ key: 'gps', data: JSON.stringify(paths), success: function(e) { //console.log(e); }, fail: function(e) { console.log(e) } }); });}//绘制跑步轨迹addLine(points) { var that = this; //计算距离 function calculationDistance(ps) { var LC = 0; ps.forEach(function(f, index) { let lng1 = f.longitude; let lat1 = f.latitude; let lng2 = f.longitude; let lat2 = f.latitude; if (ps[index + 1]) { lng2 = ps[index + 1].longitude;; lat2 = ps[index + 1].latitude; } let radLat1 = lat1 * Math.PI / 180.0; let radLat2 = lat2 * Math.PI / 180.0; let a = radLat1 - radLat2; let b = (lng1 * Math.PI / 180.0) - (lng2 * Math.PI / 180.0); let s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2))); LC = LC + s * 6370996.81 }) that.LC = (LC / 1000).toFixed(3); that.SD = (LC * 3.6 / (that.time)).toFixed(2); }; calculationDistance(points); const taskLine = { //路线 points: points, //经纬度数组 color: '#00ff00', //线的颜色 width: 5, //线的宽度 borderWidth: 1, //线的厚度 dottedLine: false, //是否虚线 arrowLine: true //带箭头的线 开发者工具暂不支持该属性 } this.polyline[0] = taskLine;}
其中:filterGPSPoints方法用于过滤GPS飘逸点数据,douglasPeucker方法用于抽稀GPS数据,addLine方法绘制跑步轨迹。
2、轨迹回放
轨迹回放功能的实现主要通过moveAlong方法实现,设置的参数包括marker点的ID,轨迹线路和动画长度。本文实现了在轨迹回放时候切换三维场景,然后自动旋转等特效。
moveAlong() { var that = this; var duration = 10000; var durationMove = 50; var markerId = 10; var js = TimeTotimestamp(that.JS); var sd = that.SD; var lc = that.LC; that.startNum = 2; that.isShowMyRunRecord = false; that.isShowMyWeRun = false; if (this.MapContext) { this.MapContext.moveAlong({ markerId: markerId, autoRotate: false, path: this.polyline[0].points, duration: duration, //假设动画执行5秒 success(res) { // ios是开始动画就会执行,安卓手机是在动画结束后执行success that.removeAlong(); that.startName = "开始"; that.startNum = 0; that.isShowMyRunRecord = true; that.isShowMyWeRun = true; that.isShowShare = true; } }); var i = 0; var tt = 10; that.startName = tt; that.endS = setInterval(function() { tt--; that.startName = tt; }, 1000); var durationZH = duration / durationMove; that.rotateDH = setInterval(function() { i++; if (i < 40) { that.skew = i; } that.rotate = (270 / durationZH) * i; that.startName = tt; that.LC = ((js / durationZH) * i * (sd / 3600)).toFixed(3); that.JS = TimeToHFS((js / durationZH) * i); }, durationMove); }}
3、核心算法
filterGPSPoints算法过滤GPS飘逸点数据:
// 定义阈值const speedThreshold = 40; // 速度阈值,单位为m/sconst accelerationThreshold = 4; // 加速度阈值,单位为m/s^2// 过滤GPS飘逸点的函数function filterGPSPoints(points) { // 如果点的数量小于等于2,直接返回原始点集合 if (points.length <= 2) { return points; } // 过滤后的点集合 const filteredPoints = [points[0]]; // 遍历原始点集合 for (let i = 1; i < points.length - 1; i++) { const prevPoint = points[i - 1]; const currentPoint = points[i]; const nextPoint = points[i + 1]; // 计算当前点的速度和加速度 const speed = calculateSpeed(prevPoint, currentPoint); const acceleration = calculateAcceleration(prevPoint, currentPoint, nextPoint); // 如果速度和加速度都低于阈值,认为是有效点,加入过滤后的点集合 if (speed <= speedThreshold && acceleration <= accelerationThreshold) { filteredPoints.push(currentPoint); } } // 加入最后一个点 filteredPoints.push(points[points.length - 1]); return filteredPoints;}// 计算两个点之间的速度function calculateSpeed(prevPoint, currentPoint) { const distance = calculateDistance(prevPoint, currentPoint); const time = (currentPoint.time - prevPoint.time)/1000; // 假设timestamp是时间戳 return distance / time;}// 计算三个点之间的加速度function calculateAcceleration(prevPoint, currentPoint, nextPoint) { const speed1 = calculateSpeed(prevPoint, currentPoint); const speed2 = calculateSpeed(currentPoint, nextPoint); const time = (nextPoint.time - prevPoint.time)/1000; // 假设timestamp是时间戳 return (speed2 - speed1) / time;}// 计算两个点之间的距离function calculateDistance(point1, point2) { const lat1 = point1.latitude; const lon1 = point1.longitude; const lat2 = point2.latitude; const lon2 = point2.longitude; const R = 6371; // 地球半径,单位为km const dLat = deg2rad(lat2 - lat1); const dLon = deg2rad(lon2 - lon1); const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * Math.sin(dLon / 2) * Math.sin(dLon / 2); const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); const distance = R * c * 1000; // 转换为米 return distance;}// 将角度转换为弧度function deg2rad(deg) { return deg * (Math.PI / 180);}module.exports = filterGPSPoints;
抽稀GPS数据:
//计算距离function calculationDistance(point1, point2) { let lat1 = point1.latitude; let lat2 = point2.latitude; let lng1 = point1.longitude; let lng2 = point2.longitude; let radLat1 = lat1 * Math.PI / 180.0; let radLat2 = lat2 * Math.PI / 180.0; let a = radLat1 - radLat2; let b = (lng1 * Math.PI / 180.0) - (lng2 * Math.PI / 180.0); let s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2))); return s * 6370996.81;};//计算垂距function distToSegment(start, end, center) { //下面用海伦公式计算面积 let a = Math.abs(calculationDistance(start, end)); let b = Math.abs(calculationDistance(start, center)); let c = Math.abs(calculationDistance(end, center)); let p = (a + b + c) / 2.0; let s = Math.sqrt(Math.abs(p * (p - a) * (p - b) * (p - c))); return s * 2.0 / a;};//递归方式压缩轨迹function compressLine(coordinate, result, start, end, dMax) { if (start < end) { let maxDist = 0; let currentIndex = 0; let startPoint = coordinate[start]; let endPoint = coordinate[end]; for (let i = start + 1; i < end; i++) { let currentDist = distToSegment(startPoint, endPoint, coordinate[i]); if (currentDist > maxDist) { maxDist = currentDist; currentIndex = i; } } if (maxDist >= dMax) { //将当前点加入到过滤数组中 result.push(coordinate[currentIndex]); //将原来的线段以当前点为中心拆成两段,分别进行递归处理 compressLine(coordinate, result, start, currentIndex, dMax); compressLine(coordinate, result, currentIndex, end, dMax); } } return result;};/** * *@param coordinate 原始轨迹Array<{latitude,longitude}> *@param dMax 允许最大距离误差 *@return douglasResult 抽稀后的轨迹 * */function douglasPeucker(coordinate, dMax) { if (!coordinate || !(coordinate.length > 2)) { return null; } coordinate.forEach((item, index) => { item.key = index; }); let result = compressLine(coordinate, [], 0, coordinate.length - 1, dMax); result.push(coordinate[0]); result.push(coordinate[coordinate.length - 1]); let resultLatLng = result.sort((a, b) => { if (a.key < b.key) { return -1; } else if (a.key > b.key) return 1; return 0; }); resultLatLng.forEach((item) => { item.key = undefined; }); return resultLatLng;}module.exports = douglasPeucker;